Molecular Phenotyping of Immune Cells from Young NOD Mice Reveals Abnormal Metabolic Pathways in the Early Induction Phase of Autoimmune Diabetes

نویسندگان

  • Jian Wu
  • Dorothy N. Kakoola
  • Nataliya I. Lenchik
  • Dominic M. Desiderio
  • Dana R. Marshall
  • Ivan C. Gerling
چکیده

Islet leukocytic infiltration (insulitis) is first obvious at around 4 weeks of age in the NOD mouse--a model for human type 1 diabetes (T1D). The molecular events that lead to insulitis and initiate autoimmune diabetes are poorly understood. Since TID is caused by numerous genes, we hypothesized that multiple molecular pathways are altered and interact to initiate this disease. We evaluated the molecular phenotype (mRNA and protein expression) and molecular networks of ex vivo unfractionated spleen leukocytes from 2 and 4 week-old NOD mice in comparison to two control strains. Analysis of the global gene expression profiles and hierarchical clustering revealed that the majority (~90%) of the differentially expressed genes in NOD mice were repressed. Furthermore, analysis using a modern suite of multiple bioinformatics approaches identified abnormal molecular pathways that can be divided broadly into 2 categories: metabolic pathways, which were predominant at 2 weeks, and immune response pathways, which were predominant at 4 weeks. Network analysis by Ingenuity pathway analysis identified key genes/molecules that may play a role in regulating these pathways. These included five that were common to both ages (TNF, HNF4A, IL15, Progesterone, and YWHAZ), and others that were unique to 2 weeks (e.g. MYC/MYCN, TGFB1, and IL2) and to 4 weeks (e.g. IFNG, beta-estradiol, p53, NFKB, AKT, PRKCA, IL12, and HLA-C). Based on the literature, genes that may play a role in regulating metabolic pathways at 2 weeks include Myc and HNF4A, and at 4 weeks, beta-estradiol, p53, Akt, HNF4A and AR. Our data suggest that abnormalities in regulation of metabolic pathways in the immune cells of young NOD mice lead to abnormalities in the immune response pathways and as such may play a role in the initiation of autoimmune diabetes. Thus, targeting metabolism may provide novel approaches to preventing and/or treating autoimmune diabetes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular pathway alterations in CD4 T-cells of nonobese diabetic (NOD) mice in the preinsulitis phase of autoimmune diabetes

Type 1 diabetes (T1D) is a multigenic disease caused by T-cell mediated destruction of the insulin producing pancreatic islet ß-cells. The earliest sign of islet autoimmunity in NOD mice, islet leukocytic infiltration or insulitis, is obvious at around 5 weeks of age. The molecular alterations that occur in T cells prior to insulitis and that may contribute to T1D development are poorly underst...

متن کامل

Treatment effect of GABA on improve type one diabetes in NOD mice

Introduction: Gama amino butyric acid (GABA) is the major inhibitory neurotransmitter in the mammalian nervous system. The concentration of GABA and the number of GABA cell secretion decrease in diabetic patient and experimental diabetes model. The reported effects of GABA activation on insulin secretion from beta cells have been controversial. In this study we investigated if GABA administr...

متن کامل

Double Negative (CD3+4−8−) TCRαβ Splenic Cells from Young NOD Mice Provide Long-Lasting Protection against Type 1 Diabetes

BACKGROUND Double negative CD3(+)4(-)8(-) TCR alphabeta splenic cells (DNCD3) can suppress the immune responses to allo and xenografts, infectious agents, tumors, and some autoimmune disorders. However, little is known about their role in autoimmune diabetes, a disease characterized by the reduction of insulin production subsequent to destruction of pancreatic beta-cells by a polyclonal populat...

متن کامل

Cd1-Restricted Nk T Cells Protect Nonobese Diabetic Mice from Developing Diabetes

NK T cells are a unique subset of T cells that recognize lipid antigens presented by CD1d. After activation, NK T cells promptly produce large amounts of cytokines, which may modulate the upcoming immune responses. Previous studies have documented an association between decreased numbers of NK T cells and the progression of some autoimmune diseases, suggesting that NK T cells may control the de...

متن کامل

IRAK-M Deficiency Promotes the Development of Type 1 Diabetes in NOD Mice

Type 1 diabetes mellitus (T1DM) is an organ-specific autoimmune disease characterized by progressive destruction of insulin-secreting pancreatic β-cells. Both T-cell-mediated adaptive responses as well as innate immune processes are involved in pathogenesis. Interleukin-1 receptor-associated kinase M (IRAK-M) can effectively inhibit the MyD88 downstream signals in Toll-like receptor pathways, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012